NOTES

Molecular Rotations of Glucides in Relation to their Structures. XI^{1} . β -D-Allomethylose

By Shukichi Yamana

(Received October 29, 1962)

Micheel observed the mutarotation of β -Dallomethylose and obtained the following data²: $[M]_D^{18}(W) = -19.7^{\circ}$ (30 sec. after the time of resolution) $\rightarrow -1.6^{\circ}$ (85 min. after the time of resolution)

Therefore, it can be expected that the initial $[M]_D^{20}(W)$ of β -D-allomethylose is more laevorotatory than -19.7° . However, by using his own method of calculation, Whiffen obtained 2° as the $[M]_D(W)$ of β -D-allomethylose³). It is apparent that Whiffen's calculated value is incompatible with the values observed by Micheel. The present author will try to apply the PM-method in this case. The names of the carbohydrates to which the calculations are applied, with the unit groups in their molecules, are given in Table I.

_				_
Т.		T	17	1
1	ΑЛ	эь.	æ	1

Name	Unit group	$[M]_{D}(W)$	Ref.
β-D-Allo- methylose	[(OH) ^{1β} , (OH) ^{2α} , (OH) ^{3α} , (OH) ^{4α} , (CH ₃) ^{5β} , Ring]		
β-D-Gulo- methylose	[(OH) ^{1β} , (OH) ^{2α} , (OH) ^{3α} , (OH) ^{4β} , (CH ₃) ^{5β} , Ring]	-69.4°4)	5

Referring to Table I, if the orientation of $(OH)^4$ changes from β to α in β -D-gulomethylose, β -D-allomethylose is obtained. By using the PM-method, $\sum [\mu]_{\text{Dobs}}^{20}$, caused by this orientation change of $(OH)^4$ (that is to say, $[\mu]_{\text{Dobs}}^{20}$ of Yo. Diff. $<\beta$ -D-allomethylose $-\beta$ -D-gulomethylose $>^6$), is calculated as below:

$$\{(4\alpha) - (4\beta)\} X \{(1\beta) + (2\alpha) + (3\alpha) + (CH_3)^{5\beta} + R\}^{7)} = (4\alpha) X (1\beta) + (4\alpha) X (2\alpha) + (4\alpha) X (3\alpha) + (4\alpha) X (CH_3)^{5\beta} + (4\alpha) X R - \{(4\beta) X (1\beta) + (4\beta) X (2\alpha) + (4\beta) X (3\alpha) + (4\beta) X (CH_3)^{5\beta} + (4\beta) X R\} = 0.0 - 0.5 + 45.4 + 37.9 + (4\alpha) X R - \{-0.6 + 7.1 + 0.6 - 37.6 + (4\beta) X R\}^{8)} = 113.3 + (4\alpha) X R - (4\beta) X R = 43.8^{9}$$

The corresponding observed value in given by: $\{[M]_{\mathcal{D}}^{20}(W) \text{ of } \beta\text{-D-allomethylose}\}$ minus $\{[M]_{\mathcal{D}}^{20}(W) \text{ of } \beta\text{-D-gulomethylose}\}$. Therefore, if the $[M]_{\mathcal{D}}^{20}(W) \text{ of } \beta\text{-D-allomethylose is } x$, the observed value of Yo. Diff. $<\beta$ -D-allomethylose $-\beta$ -D-gulomethylose > is (x-(-69.4)). This observed value should be equal to the above calculated $[\mu]_{\mathcal{D}\text{obs}}^{20}$. Therefore,

$$x-(-69.4)$$
 ≡ 43.8
∴ $x=-25.6$

This expected value of $[M]_{D}^{20}(W)$ of β -Dallomethylose, -25.6, is compatible with Micheel's data already mentioned. This fact may indicate the suitability of the PM-method in this case.

Department of Chemistry Kyoto Gakugei University Fushimi-ku, Kyoto

¹⁾ Part X: S. Yamana, This Bulletin, 35, 1950 (1962).

F. Micheel, Ber., 63, 347 (1930).
D. H. Whiffen, Chem. & Ind., 1956, 964.

⁴⁾ This is the observed value at 29°C.

P. A. Levene and J. Compton, J. Biol. Chem., 111, 335 (1935).

⁶⁾ Cf. Ref. 17 in a previous paper, S. Yamana, This Bulletin, 35, 1269 (1962).

⁷⁾ Cf. Ref. *12 in a previous paper, S. Yamana, This Bulletin, 31, 564 (1958).

⁸⁾ Table II of the preceding paper1) was used.

⁹⁾ Equation 15 of the preceding paper¹⁾ was used.